For each bootstrap sample grow a projection pursuit tree (PPtree object).
Source:R/baggtree.R
baggtree.Rd
For each bootstrap sample grow a projection pursuit tree (PPtree object).
Usage
baggtree(
data,
class,
m = 500,
PPmethod = "LDA",
lambda = 0.1,
size.p = 1,
parallel = FALSE,
cores = 2
)
Arguments
- data
Data frame with the complete data set.
- class
A character with the name of the class variable.
- m
is the number of bootstrap replicates, this corresponds with the number of trees to grow. To ensure that each observation is predicted a few times we have to select this number no too small.
m = 500
is by default.- PPmethod
is the projection pursuit index to be optimized, options LDA or PDA, by default it is LDA.
- lambda
a parameter for PDA index
- size.p
proportion of random sample variables in each split.
- parallel
logical condition, if it is TRUE then parallelize the function
- cores
number of cores used in the parallelization
Examples
#crab data set
crab.trees <- baggtree(data = crab, class = 'Type',
m = 200, PPmethod = 'LDA', lambda = .1, size.p = 0.5 , parallel = TRUE, cores = 2)
str(crab.trees, max.level = 1)
#> List of 200
#> $ 1 :List of 2
#> $ 2 :List of 2
#> $ 3 :List of 2
#> $ 4 :List of 2
#> $ 5 :List of 2
#> $ 6 :List of 2
#> $ 7 :List of 2
#> $ 8 :List of 2
#> $ 9 :List of 2
#> $ 10 :List of 2
#> $ 11 :List of 2
#> $ 12 :List of 2
#> $ 13 :List of 2
#> $ 14 :List of 2
#> $ 15 :List of 2
#> $ 16 :List of 2
#> $ 17 :List of 2
#> $ 18 :List of 2
#> $ 19 :List of 2
#> $ 20 :List of 2
#> $ 21 :List of 2
#> $ 22 :List of 2
#> $ 23 :List of 2
#> $ 24 :List of 2
#> $ 25 :List of 2
#> $ 26 :List of 2
#> $ 27 :List of 2
#> $ 28 :List of 2
#> $ 29 :List of 2
#> $ 30 :List of 2
#> $ 31 :List of 2
#> $ 32 :List of 2
#> $ 33 :List of 2
#> $ 34 :List of 2
#> $ 35 :List of 2
#> $ 36 :List of 2
#> $ 37 :List of 2
#> $ 38 :List of 2
#> $ 39 :List of 2
#> $ 40 :List of 2
#> $ 41 :List of 2
#> $ 42 :List of 2
#> $ 43 :List of 2
#> $ 44 :List of 2
#> $ 45 :List of 2
#> $ 46 :List of 2
#> $ 47 :List of 2
#> $ 48 :List of 2
#> $ 49 :List of 2
#> $ 50 :List of 2
#> $ 51 :List of 2
#> $ 52 :List of 2
#> $ 53 :List of 2
#> $ 54 :List of 2
#> $ 55 :List of 2
#> $ 56 :List of 2
#> $ 57 :List of 2
#> $ 58 :List of 2
#> $ 59 :List of 2
#> $ 60 :List of 2
#> $ 61 :List of 2
#> $ 62 :List of 2
#> $ 63 :List of 2
#> $ 64 :List of 2
#> $ 65 :List of 2
#> $ 66 :List of 2
#> $ 67 :List of 2
#> $ 68 :List of 2
#> $ 69 :List of 2
#> $ 70 :List of 2
#> $ 71 :List of 2
#> $ 72 :List of 2
#> $ 73 :List of 2
#> $ 74 :List of 2
#> $ 75 :List of 2
#> $ 76 :List of 2
#> $ 77 :List of 2
#> $ 78 :List of 2
#> $ 79 :List of 2
#> $ 80 :List of 2
#> $ 81 :List of 2
#> $ 82 :List of 2
#> $ 83 :List of 2
#> $ 84 :List of 2
#> $ 85 :List of 2
#> $ 86 :List of 2
#> $ 87 :List of 2
#> $ 88 :List of 2
#> $ 89 :List of 2
#> $ 90 :List of 2
#> $ 91 :List of 2
#> $ 92 :List of 2
#> $ 93 :List of 2
#> $ 94 :List of 2
#> $ 95 :List of 2
#> $ 96 :List of 2
#> $ 97 :List of 2
#> $ 98 :List of 2
#> $ 99 :List of 2
#> [list output truncated]
#> - attr(*, "split_type")= chr "data.frame"
#> - attr(*, "split_labels")='data.frame': 200 obs. of 1 variable: